This article was downloaded by: On: *16 January 2011* Access details: *Access Details: Free Access* Publisher *Taylor & Francis* Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

To cite this Article Zhaoxu, Chen and Heming, Xiao(1999) 'Theoretical calculations of thermodynamic properties of chlorotetrazoles and nitrotetrazoles', Journal of Energetic Materials, 17: 4, 345 — 356 To link to this Article: DOI: 10.1080/07370659908201795 URL: http://dx.doi.org/10.1080/07370659908201795

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Theoretical calculations of thermodynamic properties of chlorotetrazoles and nitrotetrazoles

Chen Zhaoxu Xiao Heming

Department of Chemistry. Nanjing university of science and technology, Nanjing 210094, People's Republic of China

ABSTRACT

Ab initio molecular orbital method was performed to calculate the enthalpies, heat capacities and entropies of chlorotetrazoles and nitrotetrazoles in the temperature range 100 -1000K. A scaling factor(0.90) for frequencies at HF/6-31G* level are proposed based on comparison of the calculated and the experimental thermodynamic data of 2H-tetrazole. The results show that chlorotetrazoles and nitrotetrazoles have similar thermodynamic properties respectively. Finally the heat capacity-temperature dependence in the form $(a+bT+cT^2)$ are presented by fitting the calculated heat capacity results.

INTRODUCTION

Thermodynamic properties, such as enthalpy, entropy and free energy, are necessary for predicting the direction of a chemical reaction and equilibrium concentration. In designing and synthesizing new type explosives, thermodynamic data are also needed for calculating explosive temperature and heat. Often these data are not known experimentally, especially for those of unstable compounds. At this time one can resort to expensive (sometimes dangerous) experiments to obtain the necessary data or they may calculate them from empirical models such as group additivity methods. Such methods work very well for hydrocarbons, but they often fail for other classes of compounds[1]. On the other hand, ab initio molecular orbital computation can provide the raw material needed for calculation of ideal gas thermodynamic properties at any temperature, based on standard methods of statistical mechanics[2]. In fact, the so called "theoretical thermochemistry" have achieved great success in predicting heat of formation of AH_m molecules[2] and entropies and heat capacities of organosilicon compounds[3,4]. Nowadays more and more papers dealing with theoretical calculations of thermodynamic properties appear in the scientific journals[5-7].

Journal of Energetic Materials Vol. 17, 345-356 (1999) Published in 1999 by Dowden, Brodman & Devine, Inc.

applications in agriculture, medicine and explosives[8]. The thermodynamic data of gascous tetrazole compounds are limited to heats of formation for some of tetrazole derivatives[9] though the thermodynamic properties of tetrazole were determined[10]. So far as we know, there are no theoretical prediction of thermodynamic properties of tetrazole compounds. In this paper we focus on two kinds of tetrazole derivatives: chlorotetrazoles and nitrotetrazoles for which there are no experimental thermodynamic data available. For a particular substituent, there are, theoretically, five neutral molecules derived from the three parent compounds of tetrazole(i.e. 1H-, 2H- and 5Htetrazole), namely 1-R-tetrazole, 2-R-tetrazole, 5-R-1H-tetrazole, 5-R-2H-tetrazole and 5-R-5Htetrazole(R=substituent group, here refers to -Cl and -NO2). Since the 5H-tetrazole is higher in energy than the 1H- and 2H-isomers by about 80KJ/mol and 90 KJ/mol respectively[11], we have Downloaded At: 13:52 16 January 2011 not studied it in this paper. The molecular structures of compounds studied in this paper are displayed in Fig.1. Three types of thermodynamic functions: standard molar enthalpy (H_{π}^{*}) , standard molar heat capacity ($C_{2,n}^{\circ}$) and standard molar entropy (S_{n}°) are calculated. As there are no experimental results, we hope to compensate for the lack of experimental data by theoretical means. **COMPUTATIONAL METHODS**

Enthalpy, heat capacity and entropy were calculated according to the general statistical thermodynamic method [12]. The absolute entropy of the ideal gas at 1 atm can be written

Recently, there has been widespread interest in tetrazole compounds, due to their various

$$S=S_1+S_r+S_v$$

where St, Sr and Sv are the translational; rotational and vibrational entropies, respectively, and according to statistical thermodynamics, they follow

$$S_t=Rln(f_te/N_0)+1.5R$$

where ft is the transitional molecular partition function which depends on the mass of the molecule and temperature, No is Avogadro constant and R is the gas constant.

 $Sr=Rln(f_r)+1.5R(for a non-linear molecule)$

 $Sr=Rln(f_r+R)+1.5R(for a linear molecule)$

where fr is the molecular rotational partition function which depends on the mass of the molecule and the optimized molecular geometric configurations and

$Sv=Rln(f_v)+U_v/T$

where f_k is the sum of various harmonic vibrational partition functions and Uv is the sum of various harmonic vibrational energies, both of which depends on all the harmonic vibrational frequencies.

The heat of capacity at 1 atm can be written as

$$Cp=C_1+C_r+C_v+R$$

where $C_t C_r$ and C_v is the contribution of the translation, rotation and vibration respectively. The last mainly depends on various harmonic frequencies.

Quantum-chemical calculations were performed using Gaussian 92[13] program. Both geometrical optimizations and frequency calculations were carried out at HF/6-31G* [14] level on a Tontru Pentium personal computer in our laboratory. The frequencies used for calculating thermodynamic properties are scaled by 0.90(sec below). The calculations of thermodynamic properties were completed using a self-compiled program on the same computer.

RESULTS AND DISCUSSIONS

1 Molecular Geometries and Frequency Scaling

All the optimized molecular geometries for the titled compounds are depicted in Fig.1 and Table 1. All of them belong to Cs point group. The unscaled vibrational frequencies are listed in Table 3. In the following thermodynamical calculations of the thermodynamic properties all the frequencies are scaled by 0.90. As can be seen that the lowest vibrational frequencies of nitrotetrazoles are higher than those of chlorotetrazoles.

The theoretically calculated frequencies, especially at relatively lower theoretical level, are overestimated and they should be scaled by a factor to get close to the experimental results. The scaling factor depends on the theoretical level and varies a little with different compounds. The most-commonly used scaling factor is 0.89 for frequencies at HF/6-31G* level[15]. So far as we know there are no scaling factor for tetrazole compounds. To find the factor suitable for calculating thermodynamic properties of tetrazole compounds, we calculated the thermodynamic functions, with the frequencies scaled with various factors, of 2H-tetrazole for which the experimental gaseous thermodynamic properties have been measured[10]. The maximal absolute deviations(m) and root mean square errors(r) for Cp, S and H at different scaling factors are listed in Table 2. It is clear from the table that for Cp and H the m's and r's reach the smallest at f=0.90 whereas the

corresponding errors for S at f=0.90 are a bit larger than those at f=0.89 respectively. In this paper we chose f=0.90 as the scaling factor. At this scaling factor, the maximum absolute errors for Cp, H and S are 0.67 J/k/mol, 0.17 kJ/mol and 0.89 J/K/mol, respectively, which are a bit superior to the corresponding errors (1.255 J/K/mol) from additivity methods [16].

2 Thermodynamic Properties

The calculated heat capacities, enthalpies and entropies of the titled compounds in the temperature range 100-1000K are listed in Table 4. The heat capacities and temperature dependence in the form a+bT+cT2 are contained in Table 5.

From Table 4 we can see that as the temperature goes up, the difference between the thermodynamic functions of the anions and those of the corresponding neutrals increase. For example, at 400 k the enthalpy of (1) is larger than that of (5) by 0.15kJ/mol while at 1000K the difference is 5.67kJ/mol. This is because the neutrals have more vibrational levels than the anions(see Table 3). Generally speaking, chlorotetrazoles have similar thermodynamic properties, obviously, due to, them being isomers and having similar molecular geometries and electronic structures. The same trends can be found for nitrotetrazoles. As nitrotetrazoles have more vibrational levels than the corresponding chlorotetrazoles and the lowest vibrational frequencies of the former are lower than those of the later, the thermodynamic functions of nitrotetrazoles are larger than those of chlorotetrazoles at any temperature.

The fitting parameters for heat capacity is very similar, except that nitrotetrazoles have larger values than the chlorotetrazoles.

Although we can not make direct comparison between our theoretical results and experimental ones, the relatively small deviation for 2H-tetrazole lead us to believe that our computation results are quite reliable, as chlorotetrazoles and nitrotetrazoles are derivatives of tetrazole. We hope our theoretical results will receive experimental support in the future.

CONCLUSION

We have predicted heat capacities, entropies and enthalpies of chlorotetrazoles and nitrotetrazoles by means of ab initio calculations. The temperature dependence functions of heat capacity are also presented. Tetrazole compounds with the same kind substituent have similar thermodynamic properties. The maximum deviations are thought to be less than 1.0kJ/mol, 1.0J/K/mol and 1.0J/K/mol for H, Cp and S respectively.

REFERENCES

- [1] D.A. Dixon and B.E. Smart, Chem. Eng. Commun., 1990, 98, 173
- [2] J.A. Pople, B.T.Luke, M.J.Frisch and J.S.Binkley, J.Phys.Chem., 1985, 89, 2198.
- [3] G.Z. Ju and W.S.Bian, Thermochimica, Acta, 1990, 167,37.
- [4] G.Z. Ju and W.S.Bian, Thermochimica, Acta, 1991, 176,259.
- [5] S. Roszak, K. Balasubramanian, Chem. Phys. Lett., 246(1995)20
- [6] A. Bauke, D.Yu and D.A. Armstrong, J. Am. Chem. Soc., 119(1997)208.
- [7] H. Kudo, M.Hashimoto, K. Yokoyama, C.H. Wu and P.v.R. Schleyer, Thermochimica acta, 299 (1997)113.
- [8] R.N. Butler, Adv. Heterocycl. Chem., 21(1977)323.
- [9] A.A Kozyro, V.V. Simirsky, A.P. Krasulin, V.M. Sevruk, et al, Z. Fiz. Khim. 64(1990)656.
- [10] Kabo G.J., Kozyro A.A., Krasulin A.P., Sevruk V.M. and Ivashkevich L.S., J. Chem. Thermo dynamics, 1993.25,485.
- [11] M. W. Wong, R. L. Leung-Toung, C. Wentrup, J.Am.Chem.Soc., 1993, 115, 2465
- [12] T.L. Hill,"Introduction to Statistical Thermodynamics", Addision-Wesley Publishing
- Company, INC, New York, 1960
- [13] Gaussian 92/DFT, Revision F.2, M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M.
- W. Gill, B. G. Johnson, M. W. Wong, J. B. Foresman, M. A. Robb, M. Head-Gordon,
- E. S. Replogle, R. Gomperts, J. L. Andres, K. Raghavachari, J. S. Binkley, C. Gonzalez,
- R. L. Martin, D. J. Fox, D. J. Defrees, J. Baker, J. J. P. Stewart, and J.A.Pople,
- Gaussian, Inc., Pittsburgh PA, 1993.
- [14] W. J. Hahre, L. Radom, P. V. R. Schleyer, J. A. Pople, "Ab Initio Molecular Orbital
- Theory", Wiley: New York, 1986
- [15] J. A. Pople, R. Krishnan, H. B. Schlegel, et al., Int. J. Quantum Chem. Symp., 1981, 15, 2691
- [16] S.W.Benson, Pure Appl.Chem.,52(1980)1767.

Downloaded At: 13:52 16 January 2011

FIGURE 1 Optimized geometries at HF/6-31G* level for the titled compounds(Bond lengths in Å).

Angle	1	2	3	4	5	6	7
N2N1C5	108.56	100.78	107.48	100.63	114.15	107.14	102.68
N1N2N3	106.10	114.72	106.72	114.40	103.66	109.40	110.22
N2N3N4	111.71	106.02	111.58	106.75	111.98	107.10	110.20
N3N4C5	106.06	106.29	105.26	105.42	110.20	110.52	102.69
N1C5N4	107.60	112.19	108.97	112.80	100.01	104.70	114.21
R2R1C16	121.97	122.38	127.23	123.20	118.46	112.60	122.89
N4C5H7	127.84	124.03	-		-	-	-
N2N1H7	-	-	121.72	-	-	-	-
N3N2H7	-	-	-	122.58		-	-

TABLE 1 The optimized bond angles for chlorotetrazoles(unit: degree)*

*: R1 and R2 represent N1 and N2 in 1 and 5 respectively, N2 and N3 in 2 and 4, or C5 and N4 in 3,4 and 7(see Fig.1)

TABLE 1 Continued

Angle	1 '	2 '	3'	4 '	5'	6'	7'	
N1N2N3	105.72	114.60	107.22	114.41	103.75	112.81	110.09	
N2N3N4	112.05	105.75	111.22	106.62	112.70	105. 58	110.09	
N3N4C5	106.39	106.70	104.76	105.08	110.39	111.07	103.19	
N4C5N1	107.03	112.15	109.98	113.51	100.21	105.18	113.44	
C5N1N2	108.81	100.79	106.81	100.38	112.94	105.38	103.19	
N6R1R2	122.97	122.44	127.86	123.53	119.35	121. 99	123.28	
07N6R1	114.09	115.13	117.88	116.43	117.48	117.29	118.11	
08N6R1	116.76	115.20	114.58	116.53	117.76	117.73	118.11	
H9C5N4	128.42	123.71	-	-	-	_	_	
H9N1N2	-	-	123.10	-	_	-	_	
H9N2N3	-	-	_	122.56	-	-	-	

TABLE 2 The calculated errors of thermodynamic properties for 2H-tetrazole at different scaling factors*

Erros	88	89	90	91	92	93	94
r _{cp}	1.57	0.95	0.40	0.44	0.99	1.58	2.17
n, cp	2.14	1.40	0.67	0.77	1.25	1.73	2.22
r _H	0.77	0.44	0.12	0.20	0.52	0.82	1.13
ար	1.15	0.64	0.17	0.34	0.83	1.31	1.79
r _s	1.07	0.42	0.61	1.30	2.01	2.72	3.41
ms	1.57	0.66	0.89	1.50	2.49	3.48	4.42

*: r denotes the root mean square error.m refers to maximum absolute error.

Compo	ls.					Vı	brat	Lonal	l fre	quen	cies					
(1)	198	343	5 58	693	803	1005	1088	1112	1229	1283	1330	1540	1584	1695	3504	
(2)	215	368	5 73	728	792	1019	1110	1130	1253	1362	1408	1460	1503	1693	3503	
(3)	291	345	553	620	793	809	1111	1172	1200	1230	1434	1581	1596	1736	3914	
(4)	302	360	557	668	807	838	1126	1164	1291	1329	1435	1502	1612	1727	3911	
(5)	175	357	545	651	803	1012	1085	1199	1221	1293	1432	1635				
(6)	158	336	503	658	729	830	1003	1060	1139	1176	1589	1756				
(7)	2 9 7	355	526	814	835	152	1156	1268	1288	1440	1521	1592				
(1.)	97 15 49	178 1567	285 1647	511 1740 1	630 1931 3	669 1526	790	879	948	1031	1067	1090	120	7 13	13 1400	
(21)	74 1485	190 1 54 3	302 1605	518 1745 1	633 944 3	697 508	783	871	950	1034	1063	1125	122	8 133	76 1441	
(31)	80 1534	252 1 644	2 25 1665 1	4 488 1776 1	3 594 905 3	699 892	9 74:	2 81	7 88	3 94	6 111	1 119	2 122	3 124	6 1460	
(41)	44 1535 1	262 1595 1	2 268	3 493 1758 1	592 895-3	: 715 894	5 76 ′	7 82	5 90	2 95	4 114	8 117	4 127	7 136	51 1471	
(5′)	71 1716 1	185 840	315	531	59 8	638	785	907	956	96 2	1105	1146	1286	1363	1474 159	9
(6′)	92 1734	104 821	307	530	595	603	730	813	882	951	1074	10 87	1322	1393	1519 160	5
(7^)	56 1671 1	258 1 827	280	499	5 94	772	84]	895	957	1174	1190	1215	1384	1400	1530 16	49

TABLE 3 The calculated frequencies (cm^{-1}) for the titled compounds (Cs) at HF/6-31G+ level*

*1 All the frequencies are not scaled.

T (K)	1	2	3	4	5	6	7
H _∎ °100	3.55	3.51	3.44	3.43	3.58	3.63	3.44
200	8.26	8.13	8.07	7.97	8.33	8.53	7.92
298	14.33	14.10	14.21	13.98	14.38	14.88	13.65
300	14.47	14.24	14.35	14.12	14.52	15.02	13.78
400	22.33	22.00	22.29	21. 93	22.18	23.01	21.05
500	31.67	31.26	31.69	31.20	31.09	32.22	29.59
600	42.21	41.74	42.25	41.66	40.98	42.32	39.15
700	53.67	53.15	53 .71	53.03	51.58	53.10	49.48
800	65.85	65.30	65. 87	65.12	62.72	64.38	60.38
900	78.60	78.01	78.58	77.77	74.26	76.03	71.73
1000	91.78	91.17	91.71	90.86	86.11	87.96	83.40
C°,100	40.59	39.77	38.60	38.10	41.04	41.98	38.26
200	54.11	53.14	54.32	53.21	54.37	56.72	51.53
298	70.04	69.02	70.98	69.58	69.11	72.50	65.42
300	70.38	69.36	71.31	69.92	69.41	72.80	65.70
400	86.43	85.53	87.15	85.81	83.33	86.51	79.47
500	99.88	99.16	100.26	99.12	94.45	97.01	90.93
600	110.41	109.86	110.51	109.57	102.81	104.78	9 9 .78
700	118.53	118.11	118.40	117.64	108.99	110.51	106.43
800	124.83	124.50	124.52	123.90	113.60	114.78	111.44
900	129.80	129.53	129.35	128.84	117.06	118.00	115.25
1000	133.76	133.55	133.22	132.79	119.72	120.48	118.18
S _a 100	243.51	242.70	242.20	241.96	243.72	244.62	241.71
200	275.63	274.19	273.63	272.83	276.12	278.03	272.28
298	300.12	298.28	298.38	297.08	300.52	303.62	295.38
300	300.59	298.74	298.86	297.54	300.99	304.10	295.82
400	323.08	320.95	321.60	319.88	322.92	327.00	316.65
500	343.86	341.55	342.51	340.51	342.76	347.49	335.66
600	363.05	360.62	361.73	359.54	360.76	365.90	353.06
700	380.70	378.20	379.38	377.07	377.09	382.50	368.96
800	396.96	394.40	395.61	393.20	391.96	397.55	383.52
900	411.96	409.37	410.57	408.09	405.55	411.26	396.87
1000	425.85	423.23	424.40	421.87	418.03	423.83	409.17

TABLE 4 The calculated thermodynamic properties for titled compounds*

*: $C_{p,n}^{\circ}$ and S_{n}° are in $JK^{-1}mol^{-1}$. H_n^o in kJ/mol.

T (K)	1'	2'	3'	4'	5'	6'	7 '
H ₁ 100	4.04	4.08	4.02	4.14	4.09	4.22	4.08
200	9.87	9.87	9.87	9.95	9.90	10.21	9.78
298	17.57	17.50	17.66	17.64	17.53	18.05	17.17
300	17.75	17.68	17.84	17.82	17.71	18.24	17.34
400	27.83	27.71	28.01	27.87	27.57	28.30	26.85
500	39.89	39.72	40.12	39.86	39.18	40.08	38.13
600	53. 5 6	53.36	53.81	53.44	52.19	53.21	50.83
700	68.49	68.26	68.73	6 8.2 7	66.26	67.37	64.64
800	84.40	84.15	84.62	84.08	81.13	82.32	79.29
900	101.08	100.81	101.26	100.65	96.62	97.86	94.59
1000	118.36	118.08	118.49	117.84	112.57	113.86	110.39
$C_{p,a}^{\circ}$ 100	49.75	49.46	49.11	49.02	49.48	51.28	48.64
200	67.80	67.25	68.61	67.88	67.57	69.61	65.82
298	89.48	88.87	90.50	89.34	88.18	90.45	85.05
300	89.93	89.32	90.95	89.78	88.60	90.86	85.45
400	111.32	110.78	111.98	110.71	107.97	109.84	104.46
500	129.29	128.87	129.60	128.44	123.73	125.14	120.47
600	143.52	143.20	143.55	142.57	135.87	136.93	133.04
700	154.59	154.35	154.42	153.60	145.07	145.88	142.68
800	163.23	163.04	1 62 .90	162.22	152.05	152.68	150.03
900	170.04	169.90	1 69. 60	169.03	157.38	157.89	155.68
1000	175.47	175.36	174.95	174.47	161.52	161.93	160.07
S _m 100	257.09	258.30	257.61	261.99	258.66	260.30	259.67
200	296.82	297.72	297.38	301.49	298.22	301.07	298.51
298	327.84	328.50	328.80	332.52	328.98	332.73	328.30
300	328.44	329.10	329.40	333.12	329.57	333.33	328.87
400	357.30	357.79	358.51	361.87	357.79	362.15	356.10
500	384.14	384.53	385.46	388.55	383.65	388.37	381.19
600	409.02	409.34	410.38	413.26	407.33	412.28	404.32
700	432.01	432.29	433.36	436.11	429.00	434.09	425.58
800	453.24	453.49	454.55	457.20	448.84	454.03	445.14
900	472.88	473.10	474.14	476.72	467.07	472.33	463.15
1000	491.08	491.30	492.30	494.82	483.88	489.18	479.79

TABLE 4 Continued

Parameters		- 1	2	3	4	5	6	7
$a(JK^{-1}mol^{-1})$ $b(JK^{-1}mol^{-1})$ $-c(JK^{-1}mol^{-1})$	(-3) (-5)	18.5511 204.652 8.93350	17.5353 204.856 8'86340	16.9418 213.004 9.71715	16.3155 210.370 9.41196	21.7588 188.668 9.12344	23.0569 195.374 9.90989	19.2511 183.780 8.50327
S-i	(5/	0.98	0.98	0.98	0.98	0.97	0.96	0.97
		- 1'	2′	3′	4	5′	6′	7′——
	(-3)	20.2806	19.8581	20.2129	20.2111	22.5986	24.9078	22.2881
-c(JK ⁻¹ mol ⁻¹) s	(-5)	11.8677 0.98	11.7756	12.2553	11.8435 3 0.96	12.1668	12.2729	0 11.1418

TABLE 5 The fitting parameters for the heat capacity of the titled compounds1)

1) The temperature range is 100-1000K 2) S is the correlation coeffecient